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On the Quasi-TEM Modes in
Inhomogeneous Multiconductor
Transmission Lines

ISMO V. LINDELL, MEMBER, IEEE

A bstract— We consider the general inhomogeneous shielded /V-conductor
transmission line and derive several properties for the quasi-TEM modes.
The concept of quasi-TEM is deduced through an asymptotic series
expansion of the fields and conditions for the propagation constant as well
as the construction of the field are presented. It is seen that the problem is
reduced to two static two-dimensional boundary value problems. The
concepts of propagating modes and impedance modes are introduced and it
is shown, that in the general case, these are not the same. The special cases
of propagating impedance modes are finally discussed and are seen to exist
under certain symmetry conditions of the multiconductor line.

I. INTRODUCTION

HE INHOMOGENEOUS, uniform, multiconductor
transmission line is a popular component in many
microwave applications, especially in filter-directional cou-
pler design. It is also well known that the dominant waves
at the low-frequency end of the spectrum are not of pure

Manuscript received October 14, 1980; revised February 27, 1981.
The author is with Helsinki Umversity of Technology, Radio Labora-
tory, Otakaari 5A, 02150 Espoo 135, Finland.

TEM but quasi-TEM character. For a one-conductor
shielded line this has been confirmed through asymptotic
field analysis in [1], [2], but a solid systematic theory for
multiconductor lines seems to be lacking. In what follows,
the Sections II-V give the analysis and the method of
constructing the quasi-TEM fields for a general inhomoge-
neous N-conductor shielded line. The construction is based
on solutions of two sets of static field problems plus an
eigenvalue problem for boundary conditions of the propa-
gating modes.

The boundary condition or circuit theoretical point of
view is then treated in Sections VI-IX. Previous considera-
tions [5], [6], based on the assumed quasi-TEM character of
the fields, have concentrated only on propagating modes.
Being simpler at the terminations of the line, another set of
modes, impedance modes, are introduced here and their
relation to the propagating modes is studied. The imped-
ance modes are defined as such voltage and current distri-
butions on the line that are the same except for a scalar

0018-9480 /81 /0800-0812$00.75 ©1981 IEEE
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Fig. 1. Cross section of an inhomogeneous shielded N-conductor line.

factor. These modes do not proceed independently of each
other, but, instead, they are coupled as they propagate.
Finally, the special and interesting case of propagating
impedance modes are discussed and are found to exist
under symmetry conditions of the line.

II. THE INHOMOGENEOUS MULTICONDUCTOR LINE

We consider the problem of a shielded N-conductor line,
uniform in the z direction and filled with an isotropic
material, which may be inhomogeneous in the transverse
plane e=¢(p)., p=p(p). (See Fig. 1.) The fields in the
waveguide satisfy Maxwell’s equations. Assuming a propa-
gating wave solution E(p)e 72, H(p)e /%7, existing in any
structure with a translatoric invariance in the z direction,
we can write

vxfzjﬁazxii—jwpﬁ} (1)
onS.

v XH=jBii, X H+jweE (2)

The boundary conditions on the conductor surfaces are
AXE=0 (3)
ax (v xXH )=ju,(i-H)=0 }"n G (4)

If we write the field vectors in transversal and longitudinal
components E(5)=&(5)+,e(p), H(p)=h(p)+,h(p),
we have from (1) to (4) -

(5)

(6)

V Xé=—jwpi,h,

Ve, =—jBé—jopi, Xh

vV Xh=jweiie, ons (7)
V h, = —jBh+jweil, X & (8)
AXe=0 (9)
e,=0 (10)
AX (v xXh)=0 on C,. (11)
i-vh,=—jBr-h=0 (12)

III. ASYMPTOTIC SERIES SOLUTION

When looking for a quasi-TEM wave in the inhomoge-
neous line we must start by considering an asymptotic
series solution for the equations (5)-(12), valid for w—0.
In fact, we might write a series expansion for every quan-
tity on w, e.g., e{w)=2e,w". It is instructive to study first
the dependence of different quantities on w. The complex

813

field vectors can be thought to arise from real time-
dependent vectors through the Fourier transform

— [o o =
F(o)=[" F(t)e™7do. (13)
e B

Because of this, we have the property F*(—w)=F(w), or
the real part of all field vectors is an even function and the
imaginary part an odd function of w. In fact, separating
the z-dependent term e /A9 we see that B*(—w)=
— B(w), or the propagation is an odd function, whereas the
attenuation factor is an even function of . For a propagat-
ing wave, € and h are real functions, whereas from (5) and
(7) we see that e, and &, are imaginary. In this case, & and &
are even functions and e,, , odd functions of w, the result
given in [1]. If the line has losses, the picture is more
complicated. We however assume here the absence of
losses because of simplicity, whence the asymptotic series
can be written as

(14)

,B(w)=,81w+,83w3 +---
e(w)=¢y+é,w*+--- (15)
(16)

h(w)=hy+hw*+ - (17)

h(w)=hwt+h’+---. (18)

These series are asymptotic in the sense that the smaller
w, the better the approximation by the first few terms. The
field &,, /,, &, h, is called the quasi-TEM field.

If the series (14)-(18) are substituted in (5)-(12), and in
each equation the coefficients of the different powers of w
are equated separately, we are left with a set of equations
for the unknown coefficients. The first few of these are

e,(w)=ewtew+ .-

v X2, =0 (19)
Ve, = B8y —juil, X hg (20)
v Xy =0 ons (1)
V by =—jBihg tjeii, X&, (22)
X, =0 (23)
e = (24)
AX (v Xhy)=0!on C. (25)
i-hy=0 (26)
n-vh=0 (27)

These equations will suffice for our purposes. It is seen that
(25) is superfluous since it is satisfied if (21) is.

1V. THE STATIC FIELD PROBLEM

The equations governing the zeroth-order fields &,, 4,
are (19), (21), which are not enough. Taking the curl
operation of (20) and (22) gives us

Vv -(€85)=0 (28)
v - (1hy)=0 (29)
after which we have a sufficient set of equations. These

equations are of the static type and the solution can be
effectuated by use of potential functions. In fact, we may
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look for a scalar potential ¢(p) giving the electric field as
= — v ¢. Then, (19) is satisfied identically and from (28)
we have

(30)

which is the generalized Laplace equation. Likewise, we
may look for a vector potential A(p) for the magnetic field:
h} =1/nv X A, because (29) will be satisfied identically.
Siuce A, o is a transversal vector, A4 must be longitudinal, i.e.,
A=ii,A(p), and the equation for this potential is obtained
from (21)

v (eve)=0

(31)

which, also, is a generalized Laplace equation. As boundary
conditions for the potentials we obtain from (23) and (26)

AXv¢=00nC or¢=UonC (32)
Ax v A=0on C,or A=y, on C,. (33)

Thus the potentials ¢, 4 assume constant values on each
of the conductor surfaces. Because the reference point of
the potentials is immaterial, we may take the value of the
potentials to be zero on the sheath.

The problems for ¢ and A are now completely specified
and the solution functions ¢(p), A(p) depend uniquely on
the set of boundary values {U}, {¥,}. U, is the voltage
between the conductor i and the sheath, whereas i, can
easily be seen to represent the magnetic flux between the
conductor i and the sheath. In fact, we may write ¢, =
Juhy-(i, Xde)=—[v A-dc=A(C,) integrating along a
curve from the conductor i to the sheath. Until now there is
no connection between the electrostatic field e, and the
mugnetostatic field /1, because their potential problems
are related in no way.

v:(1v4)=0
M

V. THE Quasi-TEM FIELD

The fields &,, h, are telated through (20) and (21). In
fact, in order to satisfy the boundary equation (24), the line
integral of v e, from any conductor / to the sheath must be
zero. Hence, from (20) there arises an integral relation
between &, and 4,

0 _ 0 —
j ‘VA-dc:,Blf v ¢-de o, =B,U,. (34)
i 4
Also. to be a physical quantity, #, must be unique, i.e., any
closed integral of < 4, must give us zero. Integrating along
a curve around the conductor C,, we have another relation
between &, and &, from (22)
/ eéo-ﬁdc—,Blf ho-de=Q,~ B[, =0. (35
C CI
Here, @,, is the charge per unit length in the electrostatic
problem and 7, is the static current in the magnetostatic
problem.
In the electrostatic problem we have a linear relation
between the quantities {Q,} and {U}; in fact, written in
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matrix form, we have

(36)

where C is the static capacitance-per-unit-length matrix.

Correspondingly, from the magnetostatic problem we may

calculate the inductance-per-unit-length matrix L defined

by h
y=L-1 (37)

The propagation constant of a quasi-TEM wave is now
seen to satisfy both y=8,U and Q=4,1, whence we have
an eigenvalue equation for §,

L-C-U=B{U. (38)

Hence, for a quasi-TEM wave the voltages on the conduc-
tors C, may not be chosen arbitrarily, but they must be an
eigenvector of the matrix L-C. Correspondingly, the mag-
netic fluxes of the conductors must be eigenvectors of the
same matrix, i.e., the fluxes and the voltages must be in the
same ratio y, /U, =y, /U = B,. Moreover, the propagation
factor is an eigenvalue of the matrix (L-C)/2

In the general case there exist N different eigenvectors,
i.e., voltage distributions corresponding to N different
propagation factors §,w.

The longitudinal components of the quasi-TEM wave e,
h, are obtained from (20) and (22). In fact, from (20) we
have

Ve, =B,V ¢—jil, X (v AX#,)=v (jBo—j4) (39)
or
e, =j(B19—A) (40)

because due to (34), the boundary condition (24) is obvi-
ously satisfied. The other field /4, cannot be written in an
explicit form

(41)

because the right-hand side cannot be written as a gradient
of an explicit scalar function, although its curl vanishes.
Also, the boundary condition (27) is satisfied. Of course,
the value of A, at any point can be obtained by integrating
the right-hand side of (41) to that point. A simple expres-
sion for h; would arise, if we would solve for the dual static
potentials, i.e., setting e, =1/ev BX#, and. hy=—v 1,
whence 2, =jB,n1+/B. The quasi-TEM approximation for
the electromagnetic field in the multiconductor line can be
written as

_ 1
VAhIZjuZX(BlﬁvA—fV¢)

E(p)=ey(p)+ii,we (D) (42)
H(p)=hy(p)+a,wh(p) (43)
B=wp,. (44)

As the frequency is decreased, the field is seen to become
more TEM. Also, if the medium is homogeneous, or inho-
mogeneous in such a way that ey is constant, the potentials
are seen to relate as A(p)=p,¢(p), and B; = /u€, whence
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e, =0 and A, =0, and the field is exactly TEM. In this case,
the C and L matrices are related as L-C=pel.

VL

In the previous analysis, one of the propagating quasi-
TEM modes was considered. For a N-conductor shielded
line there exist N such modes, each with a voltage vector
U’ and a current vector I', i=1, 2,- - -, N. Further, for each
mode there exists a propagation factor 8, potential func-
tions ¢'(p), A'(p), and finally, the fields &i(p), hi(p), ei(p),
hy(p).

Now we start to consider the most general combination
of these modes, i.e., voltage vector U and current vector I.
These are functions of the coordinate z. From Faraday’s
and Ampere’s laws we have the following transmission-line
equations:

THE GENERAL QUASI-TEM FIELD

U(z)=—joy=—jeL-1(z) (45)
I'(z)=—joQ=—joC-U(z), '=d/dz. (46)

By elimination, the second-degree equations result
Ur(z)=—’L-C-U(z) (47)
I"(z)=—’C L A(2). (48)

Note that the operator (d2/dz*)[+w*L-C can be written
as [(d/dz)I+ju(L- C)'/*)-[(d/d)[—je(L-C)/*]. Since
we only consider solutions propagating in the positive z
direction, instead of (47) and (48) we may write

U(z)=—jw(L-C)"* U(z) (49)
I'(z)=—jo(C L) 1(2). (50)

The square-roots of the matrices are taken to be positive
definite since the matrices L,C are positive definite for
lossless lines. Moreover, L and C are symmetric for iso-
tropic media, but the square roots are only symmetric if the
matrices L and C commute, whence they possess the same
set of eigenvectors. It is exactly in this case, that we can
write L'/*-C'/ for (L-C)'/? and (C-L)'/?, which can be
verified with some effort.

The most general solutions for (49) and (50) can be
written

U(z)=e 7L 9" U(0) (51)
I(z)=e*CD"-1(0) (52)

where the matrix exponential has the meaning
ed= 1+A+2iA2+ (53)

Since d/dz(ed?) =A4-(e2%), (51) and (52) are solutions of
(49) and (50) for any U(0), I(0), and U(z), I(z) can be
interpreted as voltage and current waves propagating with
a matrix propagation factor.

Because the set of eigenvectors of the matrices L-C,
(L-C)"/? and exp(—jw(L- C)'/?) is the same, the eigenval-
ues correspondlng to the eigenvector U’ of (38) are (8!)?
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and exp(—jwf}), correspondingly. An eigenvector decom-
position of U(0) in (51) gives us a propagating quasi-TEM
mode decomposition of the general voltage vector U(z).

VII. IMPEDANCE QUANTITIES OF QUASI-TEM

MoDESs

The impedance and admittance matrices of the multi-
conductor line express the linear connection between the
voltage and current vectors

U=z1 [=Y'U, (54)
Differéntiating these equations and substituting in (45),

(46), (49), and (50) gives us the relations between the
matrices Z, L, C

z=y""

L=2.CZ o C=YLY (55)
and hence
Cz=(LoVeT =g (e
=(L-¢)""*L=L-(c-L) "~ (56)
In the special case that L and C commute we have
Z:LI/Z,Q—I/ZZQ—I/Z_L1/2. (57)

Because L and C are symmetric, from (55) we find that Z
and Y are also symmetric. Equation (56) obviously gener-
alizes the familiar formula Z,=/L/C of the common
coaxial line. The result (55) was obtained earlier in [5] and
(56) in [6].

VIIL

A mode in a multiconductor line can be defined as a set
of voltage and current vectors U/, I/(j=1---N) in terms
of which any voltage and current distribution U, I can be
expressed as a linear combination. The propagating quasi-
TEM modes can be defined as those voltage distributions
which are propagated along the line and changed only by a
scalar factor: U(z)=«(z)U(0). Inserting in (51), we see that
k(z) must be an eigenvalue of exp(—jw(L-C)"/?z) and
U(0)=U,, the corresponding eigenvector. Hence, k must be
of the exponential form exp(—jBz) and B satisfies the
eigenvalue equation

[(é'g)l/z— gg] .gp =0.

DIFFERENT EIGENVALUE PROBLEMS

(58)

The current vector I, must satisfy the corresponding equa-
tion

[(c-£4] (59)
It is easy to see that the eigenvalues of both (58) and (59)
are the same, or for a voltage mode there corresponds a
current mode, which propagates with the same factor .
The eigenvectors U, and I, are different, in general, so that
for a propagating mode there does not exist a scalar
impedance of the form U/ =Z/I’,. We must, then, write in
the general matrix form UJ = Z -IJ, and, in general, may
state that if a mode has a scalar propaganon factor, it does

-1

=p

0.
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not have a scalar impedance.
Studying the impedance eigenvalue problem

(Z—20)-L,=0 (60)
or o
[(c-L)"*~z¢]-1,=0 (61)
and the corresponding admittance problem
(X—»I)-U,=0 (62)
or
[(L-C)"*~yL]-U,=0 (63)

we in fact find that they are different from those of (58)
and (59). Thus the eigenvectors U/, I/(j=1---N) do not
coincide with U/, I in general. We could call these solu-
tions impedance modes, because for them we have a scalar
impedance but generally the propagation factor is a matrix,
i.e., the voltage and current distributions change along the
line. The eigenvectors of (60) and (62) are the same and the
eigenvalues are related by z/ =1/y/, as is easily seen.

The impedance modes are important for the following
reasons. Firstly, in a homogeneous multiconductor line the
propagating modes are degenerate and no preferred system
QI{, .[I{ exists, whereas the impedance modes form a natural
nondegenerate set of basis vectors. Secondly, while being
not attractive for propagation considerations, the imped-
ance modes are very useful at the terminal planes of the
multiconductor line. For example, every impedance mode
sees its own scalar characteristic impedance z/ of a non-
terminating line.

Further, we may consider the static eigenvalue problems

(C—el)-U,=0 (64)
(L—)-1,=0 (65)
which relate the charge with the voltage by Q@ ,=cU, and

the magnetic flux with the current by ¥, =/I.. The « eigen-
vectors U/, I/(j=1---N) may be called the static modes
and they again are different from the propagating modes
and impedance modes, in general. Expanding the voltage
distribution U in terms of U/ leads to N distinct scalar
electrostatic problems each with a scalar capacitance ¢/,
and the total charge distribution is obtained in the form
Q=2Zc’UJ. The static modes do not seem to be applicable
to propagation problems in general. In special cases they
are, however, as will be seen.

IX. PROPAGATING IMPEDANCE MODES

Finally we study under which circumstances do the
propagating modes have a scalar impedance, or, what is
equivalent, when do impedance modes have a scalar propa-
gation factor. Because in this case, the eigenvectors U} and
I are the same, from (58) and (59) we see that this is only
possible if we have

(L-C)"*=(c-L)" (66)

or L and C must commute: L-C=C" L. This implies that,
from the symmetry properties of L and C, the matrix
(L-C)"/? must be symmetric. Further, it is known from
matrix algebra [3] that two semisimple matrices (like the
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real and symmetric matrices L, C) commute only when
they possess the same set of eigenvectors. Hence, L and C
and also (L-C)"/? and Z=C~'(C-L)"/? must all possess
the same set of eigenvectors for the propagatmg modes to
have a scalar impedance. In this case it is possible to
express the eigenvalues 8/, z/ in terms of the static eigen-
values ¢/, I/

B’ =w|lic’ (67)

={17/ed =1y, (68)
Conversely, if the static problems (64) and (65) have the
same set of eigenvectors, the propagating modes always
have a scalar impedance. Thus the problem reduces to two
static problems and the relation between them. It is evident
that, since changing the function p(p) only changes L and
not C, commutativity is indeed a special case and occurs
only in case of some symmetrics or conditions for the
medium.

If we require that both static eigenvalue problems possess
the same set of eigenvectors with no conditions to the
positions and form of the conductors, we evidently end up
in the condition for the medium pe=constant. In this case
we have L-C=pel so that any vectors U, I are eigenvec-
tors of (58) and (59). This means that the propagating
mode eigenvalue problem is degenerate whereas the imped-
ance mode eigenvalue problem is not. All vectors do not
satisfy (60)—(65), or all propagating modes are not imped-
ance modes, but impedance modes are propagating modes.

When certain symmetries are satisfied, the commutation
of L and C is fulfilled. For example, for a symmetric
coupled microstrip line we have L, =L,, and C;;=GC,,
which results in L-C=C-L, as is easy to confirm. The
symmetric and antisymmetric modes are propagating im-
pedance modes, whereas for an asymmetric microstrip the
propagating modes do not possess scalar impedances. More
generally, the symmetries are expressed in terms of symme-
try matrices §,, which may change the indices of the
conductors. If such an operation is performed on the
shielded N-line, it remains invariant if the corresponding
symmetry exists. Hence, we must have the properties [4]

SeL-S, = 5.C87'=C (69)

if the matrices C, L do not change in the symmetry change
of indices.

It is thus seen that if a symmetry matrix exists, both L
and C commute with this matrix. If the symmetry matrix
possesses at least one nondegenerate eigenvalue, it follows
that the eigenvector corresponding to this eigenvalue is also
an eigenvalue of both L and C. Thus this eigenvector is a
solution to all (58)—(65) and it is a propagating impedance
mode with a propagation factor and an impedance as in
(67) and (68). If the symmetry matrix possesses more
nondegenerate eigenvalues, for every eigenvalue there thus
exists one propagating impedance mode. Commutativity of
the matrices L and C occurs for complete symmetry of the
multiconductor line, i.e., either there are N distinct eigen-
values for the symmetry matrix S or there exist several
symmetry matrices S, with the total of N nondegenerate
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eigenvalues, each corresponding to a propagating imped-
ance mode of the multiconductor line.
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Equivalent Circuits of Binomial Form
Nonuniform Coupled Transmission Lines

KUNIKATSU KOBAYASHI, YOSHIAKI NEMOTO, MEMBER IEEE, RISABURO SATO, FELLOW IEEE

Abstract— Equivalent circuits of nonuniform coupled transmission lines
whose self and mutual characteristic admittance distributions obey binomial
form are presented. Telegrapher’s equations of these nonuniform coupled
transmission lines can be solved exactly using Bessel functions of fractional
order. By decomposing the chain matrix, it is shown that equivalent circuits
of these nonuniform coupled transmission lines consist of cascade connec-
tions of lumped reactance elements, uncoupled uniform transmission lines
and ideal transformers.

I. INTRODUCTION

OUPLED TRANSMISSION lines are very im-

portant in microwave network theory. They are used
extensively in all types of microwave components: filters,
couplers, matching sections, and equalizers. Uniform cou-
pled transmission lines have been described by many
authors [1]-[15], and it is well known that equivalent
representations of coupled transmission lines are very sig-
nificant techniques in the analysis and synthesis. Nonuni-
form coupled transmission lines show good transmission
responses and may also be important in microwave net-
work theory. In general, the analysis of nonuniform cou-
pled transmission lines becomes hard work because of
difficulty of finding exact network functions. The analysis
of particular nonuniform coupled transmission lines, for
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instance, exponential or hyperbolic tapered coupled trans-
mission lines, have been reported [16], [17], but useful
equivalent representations have not been obtained.

In this paper, we investigate equivalent circuits of non-
uniform coupled transmission lines whose self and mutual
characteristic admittance distributions obey binomial form.
First, it is shown that telegrapher’s equations of these
nonuniform coupled transmission lines can be solved ex-
actly using Bessel. functions of fractional order. Then, by
decomposing chain matrices of these circuits, we can show
that equivalent circuits of these nonuniform coupled
transmission lines are expressed as cascade connections of
lumped reactance elements, uncoupled uniform transmis-
sion lines and ideal transformers. Two-port equivalent
circuits of parabolic tapered coupled transmission lines
with appropriate terminal conditions imposed are also
presented by using equivalent representations shown in this

paper.

II. EXxACT SOLUTIONS OF TELEGRAPHER’S
EQUATIONS

The 2nth-order binomial form coupled transmission lines
(BFCTL) are nonuniform coupled transmission lines whose
self and mutual characteristic admittance distributions are
given as the binomial form (ax+5b)**", where x is the
distance along the line, a and b are constants and »n is an
integer. The lossless 2nth-order BFCTL above a ground
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