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On the Quasi-TEM Modes in
Inhomogeneous Multiconductor

Transmission Lines

ISMO V. LINDELL, MEMBER, IEEE

A fsstract— We consider the general inhomogeneous shielded N-conductor

transmission line and derive several properties for the quasi-TEM modes.

The concept of quasi-TEM is deduced through an asymptotic series

expansion of the fields and conditions for the propagation constant as well

as the construction of the field are presented. It is seen that the problem is

reduced to two static two-dimensionaf boundary value problems. The

concepts of propagating modes and impedance modes are introduced and it

is shown, that in the generaf case, these are not the same. The speciaf cases

of propagating impedance modes are finally discussed and are seen to exist

nmfer certain symmetry conditions of the mukiconductor line.

I. INTRODUCTION

T HE INHOMOGENEOUS, uniform, multiconductor

transmission line is a popular component in many

microwave applications, especially in filter-directional cou-

pler design. It is also well known that the dominant waves

at the low-frequency end of the spectrum are not of pure

Manuscript received October 14, 1980; revised February 27, 1981.
Tbe author is with Helsinki Unrvers~ty of Technology, Radio Labora-

tory, Otakaari 5A, 02150 Espoo 15, Finland.

TEM but quasi-TEM character. For a one-conductor

shielded line this has been confirmed through asymptotic

field analysis in [1], [2], but a solid systematic theory for

multiconductor lines seems to be lacking. In what follows,

the Sections II-V give the analysis and the method of

constructing the quasi-TEM fields for a general inhomoge-

neous N-conductor shielded line. The construction is based

on solutions of two sets of static field problems plus an

eigenvalue problem for boundary conditions of the propa-

gating modes.

The boundary condition or circuit theoretical point of

view is then treated in Sections VI– IX. Previous considera-

tions [5], [6], based on the assumed quasi-TEM character of

the fields, have concentrated only on propagating modes.

Being simpler alt the terminations of the line, another set of

modes, impedance modes, are introduced here and their

relation to the propagating modes is studied. The imped-

ance modes are defined as such voltage and current distri-

butions on the line that are the same except for a scalar

001 8-9480/8 1/0800-08 12$00.75 G 1981 IEEE
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Fig. 1. Cross section of an inhomogeneous shielded N-conductor line.

factor. These modes do not proceed independently of each

other, but, instead, they are coupled as they propagate.

Finally, the special and interesting case of propagating

impedance modes are discussed and are found to exist

under symmetry conditions of the line.

II. THE INHOMOGENEOUS MULTICONDUCTOR LINE

We consider the problem of a shielded N-conductor line,

uniform in the z direction and filled with an isotropic

material, which may be inhomogeneous in the transverse

plane e= c(~), p=~(~). (See Fig. 1.) The fields in the

waveguide satisfy Maxwell’s equrQions. Assuming a propa-

gating wave solution ~(~)e ‘Jfizj H(p)e ‘JPZ, existing in any

structure with a translatoric invariance in the z direction,

we can write

V X E=j/liiz X E–ji+i7

}

(1)
on S.

V X R=j~ ii, X ~+jue~ (2)

The boundary conditions on the conductor surfaces are

fixjj=()

}

(3)

iiX(VXE)=j/3iiz( ii. E)=0 onci” (4)

If we write the field vectors in transversal and longitudinal

components ~(~)=Z(~)+iiZeZ(~), R’~)=k(~)+iiZhZ( ~),

we have from (1) to (4)

v Xii= –jupiizhz

I
(5)

V e= = –j13E-jtipiiZ XL (6)
on S

V X K=jaciizeZ (7)

v hz = –j~~+jtitiiz X2 (8)

field vectors can be thought to arise from real time-

dependent vectors through the Fourier transform

F(co)=jmF(t)e–Jotdcd. (13)

Because of this, we have ;;e property ~“( – u) = ~(ti), or

the real part of all field vectors is an even function and the

imaginary part an odd function of W. In fact, separating

the z-dependent term e ‘~~t”)z, we see that P*( – co)=

– ~(u), or the propagation is an odd function, whereas the

attenuation factor is an even function of u. For a propagat-

ing wave, Z and ~ are real functions, whereas from (5) and

(7) we see that e, and hz are imaginary. In this case, Z and ~

are even functions and e,, h. odd functions of u, the result

given in [1]. If the line has losses, the picture is more

complicated. We however assume here the absence of

losses because of simplicity, whence the asymptotic series

can be written as

/3(@) =&ti+&cJ+ ..0 (14)

Z((.0)=ZO+Z2(,J2+ . . . (15)

ez(u)=e,ti+e3c03+ . . . (16)

Z(0)= FO+F2J+ . . . (17)

hz(co)=h1u+h3u3+ . . . . (18)

These series are asymptotic in the sense that the smaller

w, the better the approximation by the first few terms. The

field 2., ;., Z,, xl is called the quasi-TEM field.

If the series (14)–(18) are substituted in (5)–(12), and in

each equation the coefficients of the different powers of u

are equated separately, we are left with a set of equations

for the unknown coefficients. The first few of these are

Vx.zo=o

Ve, =–j13,Eo-jpiizx Eo1on S
vxiio=o

vhl = –jfllio+jctizx@o

iix Eo=o

e] =0

1

iiX(VXEo)=O on e,.

fi.~o=()

ii. vhl=O

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

~x~=() 1 (9) These equations will suffice for our purposes. It is seen that

e,=O (10) (25) is superfluous since it is satisfied if (21) is.

iix(vxk)=o }
on C,. (11) IV. THE STATIC FIELD PROBLEM

ti”vhz=-j&i.~=O J (12) The equations governing the zeroth-order fields 20, ~0

are (19), (21), which are ‘not enough. Taking the curl
III. ASYMPTOTIC SERIES SOLUTION operation of (20) and (22) gives us

When looking for a quasi-TEM wave in the inhomoge- V “(6 EO)=0 (28)

neous line we must start by considering an asymptotic

series solution for the equations (5)– (12), valid for u + O. V“(PEO)=O (29)

In fact, we might write a series expansion for every quan- after which we have a sufficient set of equations. These

tity on ~, e.g., .Z(ti)=X2#. It is instructive to study first equations are of the static type and the solution can be

the dependence of different quantities on O. The complex effectuated by use of potential functions. In fact, we may
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look for a scalar potential +(~) giving the electric field as

Z= -- v $. Then, (19) is satisfied identically and from (28)

we have

V.(cvl$)=o (30)

which is the generalized Laplace equation. Likewise, we

may look for a vector potential ~(p) for the magnetic field:

~0 ==1~p v X~~ because (29) wjll be satisfied identically.

Si~we hO is a transversal vector,.4 must be longitudinal, i.e.,

~= ii, A( F), and the equation for this potential is obtained

from (21)

(31)

which, also, is a generalized Laplace equation. As boundary

conditions for the potentials we obtain from (23) and (26)

iiXv@=O on C,or~=UJon C, (32)

iiXv A= Oon C,or A=#, on C,. (33)

Thus the potentials ~, A assume constant values on each

of the conductor surfaces. Because the reference point of

the potentials is immaterial, we may take the value of the

potentials to be zero on the sheath.

The problems for @ and A are now completely specified

and the solution functions +(P), A(~) depend uniquely on

the set of boundary values {~}, {*,}. ~ is the voltage

between the conductor i and the sheath, whereas ~1 can

easily be seefl to represent the magnetic flux between the

couductor i and the sheath. In fact, we may write ~, =

~p~o ~(ii< x d~)= --- ( v A” dF=A(Cz ) integrating along a

curve from the conductor i to the sheath. Until now there is

rm connection between the electrostatic field 20 and the

magnetostatic field ~0, because their potential problems

are related in no way.

V. THE @JASI-TEMf FIELD

The fields 2., ~. are related through (20) and (2 I). In

fact, in orde~ to satisfy the boundary equation (24), the line

integral of v e, from any conductor i to the sheath must be

zero. Hence, from (20] there arises an integral relation

between e. and ho

o

j J
vA”dF=13, 0v+.d?or$,=~l~. (34)

1 z

Also. to be a physical quantity, h, must be unique, i.e., any

closed integral of v h, must give us zero. Integrating along
a curve around the conductor C,, we have another relation

between 20 and ~. from (22)

J f
~~o~dc-~, ho. dF==Q, –~11, =0. (35)

c, c,

~cxe$ Ql, is the charge per unit length in the electrostatic

prob~em and 11 is the static current in the magnetostatic

problem.

Irl the electrostatic problem we have a linear relation

between the quantities {Ql } and {tJ}; in fact, written in

matrix form, we have

g=g. u— (36)—

where Q is the static capacitance-per-unit-length matrix.

Corresp–ondingly, from the magnetostatic problem we may

calculate the inductance-per-unit-length matrix ~ defined

by
—

~=&.I. (37)—

The propagation constant of a quasi-TEM wave is now

seen to satisfy both ~= ~1~ and Q= @l~, whence we have

an eigenvalue equati~n for /31 —

~.~.u=p;g.—— (38)

Hence, for a quasi-TEM wave the voltages on the conduc-

tors C, may not be chosen arbitrarily, but they must be an

eigenvector of tlhe matrix ~. ~. Correspondingly, the mag-

netic fluxes of the conduc~or~ must be eigenvectors of the

same matrix, i.e., the fluxes and the voltages must be in the

same ratio $,/ [{ = #l / ~ = B1. Moreover, the propagation

factor is an eigenvalue of the matrix (& oQ’\2.

In the general case there exist N di~fe~ent eigenvectors,

i.e., voltage distributions corresponding to N different

propagation factors ~lti.

The longitudinal components of the quasi-TEM wave e,,

h, are obtained from (20) and (22). In fact, from (20) we

have

Ve1=jP1Y7@–jfi= X( VA XfiZ)=V(jP1@-jA) (39)

or

e, =j(~l@–A) (40)

because due to (34), the boundary condition (24) is obvi-

ously satisfied. The other field h, cannot be written in an

explicit form

(
v,lzl=jii, X /3, ~vA-cv I+

)
(41)

because the right-hand side cannot be written as a gradient

of an explicit scalar function, although its curl vanishes.

Also, the boundary condition (27) is satisfied. Of course,

the value of h, at any point can be obtained by integrating

the right-hand side of (41) to that point. A simple expres-

sion for h, WOUIC1arise, if we would solve for the dual static
,.ettinge.= 1/6v BX iiz and- h–o= — v ~Jpotentials, i.e., .,

whence h, =j~, q +jB. The quasi-TEM approximation for

the electromagnetic field in the multiconductor line can be

written as

Z(p)= 20(@) +iiZtie,(p) (42)

~(~)=~o(~)+iizuh,(~) (43)

fi=ufl,. (44)

As the frequency is decreased, the field is seen to become

more TEM. AlsoI, if the medium is homogeneous, or inho-

mogeneous in such a way that (p is constant, the potentials

are seen to relate as A(p)=~l@(p), and ~1 =@_i_, whence
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e, DO and h ~= O, and the field is exactly TEM. In this case,

the ~ and & matrices are related as &. ~=pc~.— —

VI. THE GENERAL QuAsI-TEM FIELD

In the previous analysis, one of the propagating quasi-

TEM modes was considered. For a N-conductor shielded

line there exist N such modes, each with a voltage vector

~i and a current vector J’, i= 1, 2,. ... N. Further, for each

mode there exists a propagation factor ~‘, potential func-

tions #(F), Ai(F), and finally, the fields ZL(P), EO(P), ej(p),

h;(~).
Now we start to consider the most general combination

of these modes, i.e., voltage vector ~ and current vector 1.

These are functions of the coordinate z. From Faraday;s

and Ampere’s laws we have the following transmission-line

equations:

~(z)= –jutj= –j~&.~(z) (45)—

~(z)= –jtoQ=-jco~.~(z), ‘=d/dz. (46)—

By elimination, the second-degree equations result

g“(z)=-tJ2L. c.u(z).=— (47)

y(z)=–azg.~.~(z). (48)

Note tliat the operator (d2/dz2)~+ a2L oC can be written

as [(d/dz)I+jti(&. ~)112]. [(d/dz)~—~@. ~)1\2]. Since.
we only consider solutions propag~ting in t%e positive z

direction, instead of (47) and (48) we may write

~(z)=–j~(~”~)’’z”~(z) (49)—

~’(z) =–jti(~.&)’’2. ~(z). (50)

The square-roots of the matrices are taken to be positive

definite since the matrices &, ~ are positive definite for

lossless lines. Moreover, ~ an~ ~ are symmetric for iso-

tropic media, but the squa~e roots are only symmetric if the

matrices & and ~ commute, whence they possess the same

set of elgenvect~rs. It is exactly in this case, that we can

write ~’i2. ~’/2 for (~. ~)’\2 and (C. L)l/2, which can be=.
verifie~ WitIi some effort:

The most general solutions for (49) and

written

Q(z) =e ‘J@t~’~J’/2z. U(O)

4(z) =e ‘J@(~”&)’/2Z.~(())

(50) can be

(51)

(52)

where the matrix exponential has the meaning

e!=l+~+~~z+ . . . (53)

Since d/dz(e!$J =4. (e&), (51) and (52) are solutions of

(49) and (50) for any ~(0), X(O), and ~(z), ~(z) can be

interpreted as voltage and current waves propagating with
a matrix propagation factor.

Because the set of eigenvectors of the matrices L. C,
(~. ~)1/2 and exp( –jco(&. ~)’\2) is the same, the eige=v~-

u& corresponding to the eigenvector ~’ of (38) are ( ~~ )2

815

and exp ( –jt#?; ), correspondingly. An eigenvector decom-

position of Q(O) in (51) gives us a propagating quasGTEM

mode decomposition of the general voltage vector Ll(z).

VII. IMPEDANCE QUANTITIES OF QuAsI-TEM

MODES

The impedance and admittance matrices of the multi-

conductor line express the linear connection between the

voltage and current vectors

~=Z.I ~= Y. u g=y-l.=- =—! (54).

Differentiating these equations and substituting in (45),

(46), (49), and (50) gives us the relations between the

matrices ~, &, ~—

~=~.~.~ or ~=~.L.Y (55)— — .=

and hence

~=(L” C)112. C-l=g-l. (~. L)1\2.== —.

=(&.g)-’/&=@=&) &2-’/2. (56)— —

In the special case that & and ~ commute we have

~=&2&\2=C-1j2.L’\2. (57). . .

Because & and ~ are symmetric, from (55) we find that ~

and ~ are also ~ymmetric. Equation (56) obviously gene~-

alizes the familiar formula ZC = ~ of the common

coaxial line. The result (55) was obtained earlier in [5] and

(56) in [6].

VIII. DIFFERENT EIGENVALUE PROBLEMS

A mode in a multiconductor line can be defined as a set

of voltage and current vectors ~J, ~J( j = 1..0 N) in terms

of which any voltage and current distribution ~, ~ can be

expressed as a linear combination. The propagating quasi-

TEM modes can be defined as those voltage distributions

wti,ch are propagated along the line and changed only by a

scalar factor: U(Z) = IC(Z)~(0). Inserting in (51), we see that

K(Z) must be an eigenvalue of exp ( –ju( ~. < )1/2z ) and

E(O) = up the corresponding eigenvector. H~nc~, K must be

of the exponential form exp ( –j~z ) and /3 satisfies the

eigenvalue equation

[(~”y-%]”u,=o. (58)

The current vector 1P must satisfy the corresponding equa-

tion

[ 1
(g.&) ’/2-:~ .~p=o. (59)——

It is easy to see that the eigenvalues of both (58) and (59)

are the same, or for a voltage mode there corresponds a

current mode, which propagates with the same factor /3.

The eigenvectors UP and 1P are different, in general, so that
for a propagating mode there does not exist a scalar

impedance of the form LJi = Zj~~. We must, then, write in

the general matrix form QJ = ~. ~;, and, in general, may

state that if a mode has a scala~propagation factor, it does
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not have a scalar impedance.

Studying the impedance eigenvalue problem

(g-z< ).Ji=o (60)

or

[(@’/2-zg] .~l =0 (61)

and the corresponding admittance problem

(~-Y~)”EL ‘o (62)

or

[(&c) ’/2 –y&] og, = o (63)—

we in fact find tha~t~ey are different from those of (58)

and (59). Thus the eigenvectors LJ~, ~;(j= 1” coN) do not

coincide with ~~, ~~ in general. We could call these solu-

tions impedance modes, because for them we have a scalar

impedance but generally the propagation factor is a matrix,

i.e., the voltage and current distributions change along the

line. The eigenvectors of (60) and (62) are the same and the

eigenvalues are related by ZJ = 1/yJ, as is easily seen.

The impedance modes are important for the following

reasons. Firstly, in a homogeneous multiconductor line the

propagating modes are degenerate and no preferred system

u;, l; exists, whereas the impedance modes forma natural
nondegenerate set of basis vectors. Secondly, while being

not attractive for propagation considerations, the imped-

ance modes are very useful at the terminal planes of the

multiconductor line. For example, every impedance mode

sees its own scalar characteristic impedance ZJ of a non-

terminating line.

Further, we may consider the static eigenvalue problems

(g-c~)-g, =o (64)

(&–1~).~,=o (65)—

which relate the charge with the voltage by Q.= c~, and

the magnetic flux with the current by ~ = 1~~.The eigen-

vectors tl~, ~{( j = 1” . .N) may be called the static modes

and they again are different from the propagating modes

and impedance modes, in general. Expanding the voltage

distribution ~ in terms of Q{ leads to N distinct scalar

electrostatic problems each with a scalar capacitance cJ,
and the total charge distribution is obtained in the form

~= 2cJQ{. The static modes do not seem to be applicable

to propagation problems in general. In special cases they

are, however, as will be seen.

IX. PROPAGATING IMPEDANCE MODES

Finally we study under which circumstances do the

propagating modes have a scalar impedance, or, what is

equivalent, when do impedance modes have a scalar propa-

gation factor. Because in this case, the eigenvectors ~~ and

~~ are the same, from (58) and (59) we see that this M only

possible if we have

(&@2=(g.~)’/2 (66)

or ~ and ~ must commute: L. ~= ~. ~. This implies that,

fro= the <ymmetry propert~es–of ’~ ‘and &, the matrix

(~ o~)1[’ must be symmetric. Furt~er, it is known from

m–at~k algebra [3] that two semisimple matrices (like the

real and symmetric matrices ~, ~) commute only when

they possess the same set of eigen~ectors. Hence, & and ~

and also (~”~)l\2 and ~=~ – 1“(~.~)’12 must al~posse~

the same s=t ~f’ eigenvectors for the ~ropagating modes to

have a scalar impedance. In this case it is possible to

express the eigenvalues ~J, ZJ in terms of the static eigen-

values CJ, lJ

Conversely, if the static problems (64) and (65) have the

same set of eigenvectors, the propagating modes always

have a scalar impedance. Thus the problem reduces to two

static problems and the relation between them. It is evident

that, since changing the function p(~) only changes ~ and

not C’, commut ativit y is indeed a special case and &ccurs

only=in case of some symmetries or conditions for the

medium.

If we require that both static eigenvalue problems possess

the same set of eigenvectors with no conditions to the

positions and form of the conductors, we evidently end up

in the condition for the medium I.LE = constant. In this case

we have &” Q= IMI so that any vectors ~, J are eigenvec-

tors of (~8)–and 159). This means that the propagating

mode eigenvalue problem is degenerate whereas the imped-

ance mode eigenvalue problem is not. All vectors do not

satisfy (60)– (65 ), or all propagating modes are not imped-

ance modes, but impedance modes are propagating modes.

When certain symmetries are satisfied, the commutation

of & and ~ is fulfilled. For example, for a symmetric

cou~led rni~rostrip line we have L ~,= L22 and Cl ~= C22

which results in &: ~ = ~” ~, as is easy to confirm. The

symmetric and antls~mmet~c modes are propagating im-

pedance modes, whereas for an asymmetric microstrip the

propagating modes do not possess scalar impedances. More

generally, the symmetries are expressed in terms of symme-

try matrices &, which may change the indices of the

conductors. If such an operation is performed on the

shielded N-1ine, it remains invariant if the corresponding

symmetry exists. Hence, we must have the properties [4]

if the matrices ~, ~ do not change in the symmetry change

of indices. ‘“ –

It is thus seen that if a symmetry matrix exists, both L
and ~ commute with this matrix. If the symmetry matri%

possi%es at least one nondegenerate eigenvalue, it follows

that the eigenvector corresponding to this eigenvalue is also

an eigenvalue of both L and ~: Thus this eigenvector is a

solution to all (5 8)– (657 and it N a propagating impedance

mode with a propagation factor and an impedance as in

(67) and (68). If the symmetry matrix possesses more

nondegenerate eigenvalues, for every eigenvalue there thus

exists one propagating impedance mode. Commutativity of

the matrices & and ~.occurs for complete symmetry of the

multiconduct;r 1ine, I.e., either there are N distinct eigen-

values for the symmetry matrix J or there exist several

symmetry matrices & with the to~al of N nondegenerate
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eigenvalues, each corresponding to a propagating imped-

ance mode of the multiconductor line. [2]
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Equivalent
Nonuniform

Circuits of Binomial Form
Coupled Transmission Lines
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A Wtrct- E4@vafent circuits of nonuniform coupled transmission fines

whose self and mutuaf characteristic admittance distributions obey biuomiaf

form are presented. Telegrapher’s equations of these nonuniform coupled

transmission lines csrr be solved exactly using Bessel functions of fractional

order. By decomposing the chain matrix, it is shown that equivalent circuits

of these nonuniform coupled transmission lines consist of cascade connec-

tions of lumped reactance elemenk+ uncoupled uniform transmission lines

and ideaf transformers.

I. INTRODUCTION

c OUPLED TRANSMISSION lines are very im-

portant in microwave network theory. They are used

extensively in all types of microwave components: filters,

couplers, matching sections, and equalizers. Uniform cou-

pled transmission lines have been described by many

authors [1 ]– [ 15], and it is well known that equivalent

representations of coupled transmission lines are very sig-

nificant techniques in the analysis and synthesis. Nonurti-

form coupled transmission lines show good transmission

responses and may also be important in microwave net-

work theory. In general, the analysis of nonuniform cou-

pled transmission lines becomes hard work because of

difficulty of finding exact network functions. The analysis

of particular nonuniform coupled transmission lines, for
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instance, exponential or hyperbolic tapered coupled trans-

mission lines, have been reported [16], [17], but useful

equivalent representations have not been obtained.
In this paper, we investigate equivalent circuits of non-

uniform coupled transmission lines whose self and mutual

characteristic admittance distributions obey binomial form.

First, it is shown that telegrapher’s equations of these

nonuniform coupled transmission lines can be solved ex-

actly using Bessel. functions of fractional order. Then, by

decomposing chain matrices of these circuits, we can show

that equivalent circuits of these nonuniform coupled

transmission lines are expressed as cascade connections of

lumped reactance elements, uncoupled uniform transmis-

sion lines and ideal transformers. Two-port equivalent

circuits of parabolic tapered coupled transmission lines

with appropriate terminal conditions imposed are also

presented by using equivalent representations shown in this

paper.

II. EXACT SOLUTIONS OF TELEGRAPHER’S

ECNJATIONS

The 2 n th-order binomial form coupled transmission lines
(BFCTL) are nonuniform coupled transmission lines whose

self and mutual characteristic admittance distributions are
given as the binomial form (ax+ b) *2”, where x is the

distance along the line, a and b are constants and n is an

integer. The Iossless 2n th-order BFCTL above a ground
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